Exceptional service in the national interest

Photos placed in horizontal position with even amount of white space between photos and header

Summary of Fe opacity measurement platform

- What we do, what we know, and limitations -

Taisuke Nagayama

4/14/2016

We heat and backlight FeMg foil using dynamic hohlraum and measure Fe opacity at T_e =150-200 eV and n_e =7-40x10²¹ cm⁻³

$$T_{e} = 160 \text{ eV}, n_{e} = 7 \times 10^{21} \text{ cm}^{-3}$$

$$\begin{array}{c} 2.0 \\ \hline \text{Data} \\ \text{PrismSPECT} \\ 0.5 \\ 0 \\ 8 \end{array}$$

$$\begin{array}{c} 9 \\ 1.0 \\ \hline \text{Wavelength [A]} \end{array}$$

- How does the experiment work?
- What do we know from measurements?
- What do we know from simulations?
- What are the limitations?

Experiments

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

Cross-sectional view

CH 10 μm
FeMg

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

- requirements.
- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

- Heat Fe to uniform conditions
 - → Powerful ZPDH radiation
- Measure Fe conditions independently
 - → Mg K-shell spectroscopy
- Deal with Fe self-emission
 - → 350 eV Planckian at stagnation
- Measure transmission spectra accurately
 - → Convex KAP spectrometer with x-ray films

Measurements

- Te and ne of FeMg plasmas
- Source-to-sample distance
- Radiation characterization (old)
 - XRD
 - MLM

Measurements

- Te and ne of FeMg plasmas
- Source-to-sample distance
- Radiation characterization (old)
 - XRD
 - MLM

Mg K-shell spectra are mixed in with the iron to

Increasing the back-side tamper mass increases the sample temperature and density

Measurements

- Te and ne of FeMg plasmas
- Source-to-sample distance
- Radiation characterization (old)
 - XRD
 - MLM

Source-to-sample distance is measured by parallax of ±9° measurement Sandia National Laboratories

Source-to-sample distance is measured by parallax of ±9° measurement Sandia National Laboratories

Source-to-sample distance is measured by parallax of ±9° measurement Sandia National Laboratories

Source-to-sample distance is measured by parallax of ±9° measurement National Nation

There is a strong anti-correlation between source-to-sample distance and inferred T_e

There is a strong anti-correlation between source-to-sample distance and inferred T_{ρ}

Measurements

- Te and ne of FeMg plasmas
- Source-to-sample distance
- Radiation characterization (old)
 - XRD
 - MLM

Will be discussed together with simulation

Source backlighter and sample dynamics influence the detected signals

- Heating radiation: F_y(t)
- Plasma evolution: T_e(z, t), n_e(z, t)
- Backlighter radiation: Β_ν(t)
- Radiation transport

Source backlighter and sample dynamics influence the detected signals

- Heating radiation: F_v(t)
- Plasma evolution: T_e(z, t), n_e(z, t)
- Backlighter radiation: B_v(t)
- Radiation transport

Source backlighter and sample dynamics influence the detected signals

- Heating radiation: F_v(t)
- Plasma evolution: T_e(z, t), n_e(z, t)
- Backlighter radiation: B_v(t)
- Radiation transport

Source backlighter and sample dynamics influence the detected signals

- Heating radiation: F_y(t)
- Plasma evolution: T_e(z, t), n_e(z, t)
- Backlighter radiation: Β_ν(t)
- Radiation transport

Source backlighter and sample dynamics influence the detected signals

- Heating radiation: F_v(t)
- Plasma evolution: T_e(z, t), n_e(z, t)
- Backlighter radiation: B_v(t)
- Radiation transport

Source backlighter and sample dynamics influence the detected signals

- Heating radiation: F_y(t)
- Plasma evolution: T_e(z, t), n_e(z, t)
- Backlighter radiation: B_v(t)
- Radiation transport

Source backlighter and sample dynamics influence the

Sandia National Laboratories

detected signals

- Heating radiation: F_v(t)
- Plasma evolution: T_e(z, t), n_e(z, t)
- Backlighter radiation: B_ν(t)
- Radiation transport

Source backlighter and sample dynamics influence the

detected signals

Z-pinch dynamic hohlraum

- Heating radiation: F_y(t)
- Plasma evolution: T_e(z, t), n_e(z, t)
- Backlighter radiation: B_ν(t)
- Radiation transport

Source backlighter and sample dynamics influence the

Sandia National Laboratories

detected signals

- Heating radiation: F_v(t)
- Plasma evolution: T_e(z, t), n_e(z, t)
- Backlighter radiation: B_ν(t)
- Radiation transport

Simulation bridges static-uniform picture of data and dynamic-gradient picture of reality

Simulating our measurements

Heating radiation

- Gated ZPDH pinhole images
- 3D view factor code (VISRAD)

Sample/tamper hydrodynamics

1D Lagrangian hydrodynamics code (HELIOS)

Backlighter radiation

- Gated ZPDH pinhole images
- Integrate over detector-observable area

Radiation transport

- PrismSPECT LTE emissivity and opacity database
- Numerically integrate radiation transport equation

Drive radiation is modeled with VISRAD using pinhole images Sandia National Laboratorie Calibrated with XRD power measurements

- 1. Calibrate pinhole images with XRD
- Design concentric ZPDH source, sample, and surrounding gold components
- 3. VISRAD simulate radiation time history on sample

Drive radiation is modeled with VISRAD using pinhole images calibrated with XRD power measurements

ole images with XRD htric ZPDH source, urrounding gold

ate radiation time

history on sample

Hydro-simulation Details:

- Free parameters:
 - Scale factor to match the measured sample temperature (C=x2.6)
 - Drive onset to match the measured sample density $(t_0=-1.0ns)$
- Fix the lower boundary of the sample
- Helios 1D Lagrangian code
- PROPACEOS for EOS and Opacity
- No inline geometrical dilution
- Disk for radiation source geometry

Same source and backlighter worked to simulate all experiments

T_e and n_e inferred from simulation agree with measured ones laboratories

Half-moon images are simulated by solving detailed radiation transport through the target gradient

Are the discrepancies caused by the time- and space-

- 1. Simulate our $I_{v,0}$ and I_v
 - FeMg and CH emission/attenuation
 - $T_e(z,t)$, $n_e(z,t)$
 - Backlighter time history, B_v(t)
- 2. Analyze $I_{v,0}$ and I_v in the same way as the data

Investigated concerns do not explain the observed discrepancies

Self-emission effects, tamper effects, and time- and space-integration effects do not explain the observed discrepancies

Investigated concerns do not explain the observed discrepancies

Self-emission effects, tamper effects, and time- and space-integration effects do not explain the observed discrepancies